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ABSTRACT: NMR restrictions are suitable to specify the
geometry of a molecule when a single well-defined global
free energy minimum exists that is significantly lower than
other local minima. Carbohydrates are quite flexible, and
therefore, NMR observables do not always correlate with a
single conformer but instead with an ensemble of low free
energy conformers that can be accessed by thermal fluctua-
tions. In this communication, we describe a novel procedure
to identify and weight the contribution to the ensemble of
local minima conformers based on comparison to residual
dipolar couplings (RDCs) or other NMR observables, such
as scalar couplings. A genetic algorithm is implemented to
globally minimize the R factor comparing calculated RDCs
to experiment. This is done by optimizing the weights of
different conformers derived from the exhaustive local
minima conformational search program, fast sugar structure
prediction software (FSPS). We apply this framework to six
human milk sugars, LND-1, LNF-1, LNF-2, LNF-3, LNnT,
and LNT, and are able to determine corresponding popula-
tion weights for the ensemble of conformers. Interestingly,
our results indicate that in all cases the RDCs can be well
represented by only a few most important conformers. This
confirms that several, but not all of the glycosidic linkages in
histo-blood group “epitopes” are quite rigid.

Carbohydrates play an important role in many molecular
recognition phenomena. Their flexibility in solution is often

important to their function1,2 and has been investigated for
several simple disaccharides, complex oligosaccharides. and poly-
saccharides.3,5 Bush and co-workers have categorized their flex-
ibility as that arising either from fluctuations within a single free
energyminimum or due to transitions among different minima in
glycosidic linkage space.5

For complex oligosaccharides, residual dipolar coupling (RDC)6

measurements in anisotropic solution environments provide im-
portant global structural information. Calculating RDCs from
structure requires knowing first the alignment tensor of a given
model structure or rigid fragment. A single value decomposition
(SVD) method7 is often used to fit the alignment tensor to
experimental data and the particular rigid domain.8 However, this
method is not suitable for flexible molecules for which a single
global alignment tensor does not exist. Furthermore, deriving the
alignment tensor using SVD requires at least 5 independent RDC

values from each rigid structure fragment, and often significant
uncertainty is present in the form of “structural noise”. This is
particularly problematic when only few dipolar couplings are
available for fitting.9

Alternatively, for flexible systems, the alignment tensor has
often been estimated from simulations.10 For example, the
PALES approach10 estimates the alignment tensor by performing
a Monte Carlo search of molecules in the vicinity of an infinite
two-dimensional plate. Several other methods estimate the
alignment tensor from 3D molecular conformation, using the
radius of gyration tensor,11 the moment of inertia,12 or a direct
integration in two or four dimensional space related to the Euler
angles of molecular orientations.13

The idea of estimating the alignment tensor from molecular
shape11 has been applied in several research groups14�21 to build
ensembles of partially folded or unfolded proteins. We show here
that broadly similar ideas, adapted to carbohydrates, provide
remarkable insights into the conformational ensemble of oligo-
saccharides. Residual dipolar couplings in liquid crystal media
have been utilized to determine the conformational structure of
several carbohydrates.2,4,5,22,23 However, significant challenges
exist for the wide applicability of RDCs to study complex sugars.

Recently, the Margulis group has developed a fast structural
prediction software (FSPS) to search for energy minima in
glycosidic conformation space with the assistance of NMR
data.24 The general framework includes four major steps: (1) a
coarse-grained systematic search in dihedral space for intramolec-
ular clashes, (2) energy optimizations of sterically allowed con-
formers in the gas phase or in implicit solvent through an
interface to external molecular modeling packages, (3) pooling
large numbers of energy minimized structures into a smaller set
of unique consensus structures that are conformationally and
energetically similar, and (4) producing a ranking of these groups
of conformers in comparison to calculated NMR observables
such as NOEs, RDCs, or J couplings. The limitation with this
approach is that so far the NMR observables have only been
compared to those derived from individual conformers instead of
against a properly weighted ensemble of conformers. This
approach is destined to fail when significant flexibility is present.

Because of their relevance to the immune system of infants,25

and because several of these systems have already been the
subject of detailed RDC as well as other NMR techniques
studies4,5,26,27 and computational studies,24 we focus here on six
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different humanmilk oligosaccharides, LNF-1, LNF-2, LNF-3, LND-1,
LNnT, andLNT, shown in Scheme 1S (Supporting Information).

In this communication, we present a framework to search for
the best conformational ensemble of oligosaccharides that, when
properly weighted, match experimental RDC data in solution.
We assume that each conformer within the ensemble has an
alignment tensor and a corresponding set of RDC values and that
the population averaged RDCs correspond to experimental
values. Abandoning the philosophy of restrainedMD simulations
that match NMR constraints, we instead develop two indepen-
dent programs using random walk Monte Carlo (RWMC) and a
genetic algorithm (GA) to optimize the weights given to each
conformer previously obtained from the exhaustive FSPS algo-
rithm.24 The total number of conformers derived from FSPS in
each case (see ref 24) varies roughly from 1000 to 10 000, depend-
ing on the number of monosaccharide residues involved. These
oligosaccharides thus provide a good test case: they are large
enough to have significant flexibility yet small enough to permit a
systematic exploration of the conformational space.

In a previous article,24 we computed RDC values for each
of these oligosaccharide conformers by deriving the alignment
tensor from the gyration tensor of molecular shape11 (see eqs
1S�4S in the Supporting Information). The R factor28 between
RDCs corresponding to individual conformers and those re-
ported experimentally5 were then obtained using eq 5S in the
Supporting Information. In this way, a RDC ranking of R factors
was constructed, with the smallest R value representing the best
single conformational structure in comparison with experiments.
In the current study on multiconformers, we have found that
such preranking of individual structures is very useful to bias the
initial condition of the GA or RWMC searches. This is crucial for
fast convergence on such a large number of conformers (between
1000 and 10 000).

Results from our multiple-structure optimization of R factors,
which assumes that each structure has an independent alignment
tensor and a corresponding set of RDCs, are shown in Table 1
in comparison with experimental data from the group of Allen
Bush15 for human milk sugars LNF-1, LNF-2, LNF-3, LND-1,
LNnT, and LNT. In each case, the averaged RDC value for the
ith spin vector is calculated by weighting the result of individual
conformers as described in eq 1

Q i ¼ ∑
M

k¼1
PkQ ki ð1Þ

where Q ki is the ith RDC value of the kth conformer included in
the average and Pk is the probability weight of the kth structure.

Figure 1S compares the efficiency of the RWMC and GA.
While an MC step is significantly faster than a generation of the
GA, the GA converges to smaller values of the R factor. Because
of this we only focus here on results derived from the GA. A set of
checks (Table 4S and 5S, Figure 8S, 9S and 10S) in the
Supporting Information give us confidence that our results are
meaningful and unique. The tests show that populations can
be recovered from calculated RDC’s in a robust fashion, that the
final results are independent of any starting guesses, that ensem-
bles restricted to randomnly chosen subsets of the full space have
poorer fits than the full calculation, and that the ability to con-
verge on an ensemble degrades (as expected) as the number of
experimental RDC’s is reduced.

Table 1 displays R factors of calculated RDCs in comparison
with experimental values15 for humanmilk sugars LNF-1, LNF-2,

LNF-3, LND-1, LNnT and LNT (see also Figure 2S and Table
1S in Supporting Information for detailed RDC values). The
R factor of the single best conformer is contrasted against that
obtained from the multistructure fitting algorithm (eqs 1 and 5S,
Supporting Information). We see that the multistructure opti-
mization improves the values of R factor, especially in the case
of LND-1, LNnT, and LNT.

Figure 1 and Figures 3S through 7S in the Supporting
Information show ϕ andψ glycosidic dihedral angles for all con-
formers previously derived from the FSPS algorithm4 and also
the conformers with populations (>1.0 � 10�5) from the
multistructure solutions derived from our GA optimization. In
all cases, except perhaps for LNF-3, the RDC data can be very
well represented by a subensemble of most important confor-
mers. Even in the case of LNF-3 the result from the ensemble
optimization is superior to that of a single structure. Perhaps one
of the most important findings from this study is that the number
of relevant conformers with significant weights are small for all
studies sugars. Five in the case of LND-1, 3 for LNF-1, 4 for LNF-
2, 5 for LNF-3, 5 for LNnT, and 5 for LNT, with all ϕ�ψ values
listed in Table 2S (Supporting Information). The fact that there
is only a small number of heavily weighted conformers is an indi-
cation that only certain regions in glycosidic space are likely to be
important in solution. The reader should be aware that the FSPS
is a coarse grained search algorithm in which two conformers
are defined as different only if they meet certain angular and
energetic difference criteria. It is possible that including con-
formers derived from local fluctuations around the FSPS gener-
ated energy basins may further reduce R factors.

From Table 2S (Supporting Information), we also note that
conformers with weights (>1.0� 10�5) coincide with individual
conformations with low R factor. However, Figure 2 and Table
2S indicate that the best single conformer with the lowest R
factor is not necessarily included in the subensemble of most
relevant conformations derived from our GA.Only in the cases of
LNF-1, LNF-2, and LNT does the single structure with the best
individual R factor also have a significant contributions to the
multistructure averaged RDCs values. In all cases, the weights of
different important conformers that give rise to the best GA
solution are quite different.

From the sequences depicted in Scheme 1S, we see that all six
sugars have two common linkages at the reducing (right) end,
β-D-GlcNAc-(1f3)-β-D-Gal, and β-D-Gal-(1f4)-β-D-Glc (link 3
and 4 for the first four sugars, link 2 and 3 for the other two). The
remaining linkages constitute the histo-blood group epitopes: H
type 3 for LNF-1, Lewisa for LNF-2, Lewisx for LNF-3, and
Lewisb for LND-1. The subensemble ofmost important conformers
derived from our GA algorithm (green dots in Figure 1) as well as
Figures 3S�7S (Supporting Information) indicate that the
major conformational variability arises from two common

Table 1. R Factors of Calculated RDCs in Comparison with
Experimental Data5 for LNF-1, LNF-2, LNF-3, LND-1, LNnT,
and LNTa

LNF-1 LNF-2 LNF-3 LND-1 LNnT LNT

BestS 0.188 0.137 0.365 0.207 0.094 0.101

BestM 0.176 0.120 0.337 0.130 0.051 0.055
a “bestS” denotes RDCs calculated from our best single conformer
obtained from the FSPS algorithm; “bestM’’ corresponds to RDCs from
the best multi-structure derived from our genetic algorithm.
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linkages (see Figure 1c and d). In contrast, the histo-blood group
epitopes appear to have less conformational flexibility, namely,
the distributions of ϕ�ψ values are restricted to small regions;
see green dots in Figure 1a and b, as compared to those in
Figure 1c and d. These results become more obvious as we
perform visual check and rmsd calculation as follows. The 3D
pictures of the most important conformers derived from the GA
for all oligosaccharides studied are shown in Figure 3. In most of
cases visual inspection of these most important conformers
appear to indicate that epitopes have less conformational varia-
bility. This is most clear in the cases of LNT, LNnT and LNF-1.
In Table 3S (Supporting Information), we show quantitative
results that for all studied sugars the averaged RMSDs of epitopes
are significantly smaller than that of common linkages. The
picture of relatively small structural changes in histo-blood group
epitopes and more flexible ones in the common linkages is
consistent with the conclusions from previous RDC and NOE
experiments5,26 as well as with molecular dynamics simulations
in explicit solvent using the CHARMm force field26 and the
OPLS-AA force field.24 It is clear from Figure 3 that epitopes are
not absolutely rigid. In particular, LND-1 and LNF-3 appear to
have a more diverse set of relevant conformers.

On the basis of their RDC data,5b Martin-Pastor and Bush
have proposed two best structures for each of the sugars in
Scheme 1S. These authors justified their assignment on the rea-
sonable approximation that the substructures defining the histo-
blood groups are semirigid in solution. They then carried out a
systematic search in the reduced dihedral space of the linkages
that are not the histo-blood groups and that are common to the
different oligosaccharides.While their results are very reasonable,
in our study we did not have any constraints on the histo-blood

group epitopes. Instead, the subensemble of conformers that
contribute the most to the averaged RDCs come from exploring
the full dimensional space of all glycosidic linkages. That is why
our weighted average over conformers exhibit significantly lower

Figure 3. The best subensembles of conformers derived from our GA
multistructure fitting. The glycosidic dihedral angles and populations are
listed in Table 2S, Supporting Information. (All H atoms were deleted
and all structures were aligned to β-D-GlcNAc.).

Figure 1. Distribution of conformations in ϕ�ψ glycosidic space in the
case of LND-1. Red points represent the conformers generated by the
FSPS algorithm. The green points are the conformations with highest
weight derived from the GAmultistructure fitting to RDC algorithm. (a)
Link 1, α-L-Fuc-(1f2)-β-D-Gal, (b) Link 2, β-D-Gal-(1f3)-β-D-
GlcNAc, (c) Link 3, β-D-GlcNAc-(1f3)-β-D-Gal, (d) Link 4, β-D-
Gal-(1f4)-β-D-Glc, and (e) Link 5, α-L-Fuc-(1f4)-β-D-GlcNAc.

Figure 2. Population weights of structures in the ensemble that best
matches experimental RDC data for human milk sugars: (a) LND-1, (b)
LNF-1, (c) LNF-2, (d) LNF-3, (e) LNnT, and (f) LNT defined in
Scheme 1S. Conformations with Rank IDs greater than 50 have
population weights <1.0 � 10�5 and are not shown.
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R factors, as can be seen in Table 1. Furthermore, our approach
provides not only important conformers but also population
weights, which are crucial for predicting properties of flexible
sugars.

In summary, we have created a program based on a genetic
algorithm that is capable of generating the best set of statistical
weights for conformers derived from the FSPS program or any
other suitable conformational space sampling method. When the
set of RDC values for computationally derived conformers are
properly weighted, we obtain excellent agreement with experi-
mental RDC values. We have used this algorithm to derive the
subensemble of conformers that appears to be most important in
the case of six different complex human milk sugars. The number
of conformers chosen by the algorithm as having significant
weights is small and provides an indication of which local minima
are most important when these sugars are aligned in RDC studies.
In our calculations, the alignment tensors of RDCs were esti-
mated from the molecular shapes, which assumes that alignment
is induced by steric factors. For other molecules and media,
especially those with large charges, alignment by electrostatic
forces might be dominant and their alignment tensors could be
estimated by other methods.10

The GA program is totally independent from the FSPS
conformation search program.24 Accordingly, it is also applicable
to structures obtained from other conformation search programs
and even the trajectory conformations from standard molecular
simulation packages. In addition, the general procedure is also
applicable to other NMR observables, not just RDC measure-
ments. We are planning to expand the code to perform predic-
tions of conformer weights based on chemical shifts and J couplings.
The resulting populations might also be used to calibrate force
fields in molecular dynamics simulations.
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